Essays & Articles


Design Without Designers

I  will always remember my first introduction to the power of good product design. I was newly arrived at Apple, still learning the ways of business, when I was visited by a member of Apple’s Industrial Design team. He showed me a foam mockup of a proposed product. “Wow,” I said, “I want one! What is it?”

That experience brought home the power of design: I was excited and enthusiastic even before I knew what it was. This type of visceral “wow” response requires creative designers. It is subjective, personal. Uh oh, this is not what engineers like to hear. If you can’t put a number to it, it’s not important. As a result, there is a trend to eliminate designers. Who needs them when we can simply test our way to success? The excitement of powerful, captivating design is defined as irrelevant. Worse, the nature of design is in danger.

Don’t believe me? Consider Google. In a well-publicized move, a senior designer at Google recently quit, stating that Google had no interest in or understanding of design. Google, it seems, relies primarily upon test results, not human skill or judgment. Want to know whether a design is effective? Try it out. Google can quickly submit samples to millions of people in well-controlled trials, pitting one design against another, selecting the winner based upon number of clicks, or sales, or whatever objective measure they wish. Which color of blue is best? Test. Item placement? Test. Web page layout? Test.

This procedure is hardly unique to Google. has long followed this practice. Years ago I was proudly informed that they no longer have debates about which design is best: they simply test them and use the data to decide. And this, of course, is the approach used by the human-centered iterative design approach: prototype, test, revise.

Is this the future of design? Certainly there are many who believe so. This is a hot topic on the talk and seminar circuit. After all, the proponents ask reasonably, who could object to making decisions based upon data?

Two Types of Innovation: Incremental Improvements and New ConceptsIn design—and almost all innovation, for that matter—there are at least two distinct forms. One is incremental improvement. In the manufacturing of products, companies assume that unit costs will continually decrease through continual, incremental improvements. A steady chain of incremental innovation enhances operations, the sourcing of parts and supply-chain management. The product design is continually tinkered with, adjusting the interface, adding new features, changing small things here and there. New products are announced yearly that are simply small modifications to the existing platform by a different constellation of features. Sometimes features are removed to enable a new, low-cost line. Sometimes features are enhanced or added. In incremental improvement, the basic platform is unchanged. Incremental design and innovation is less glamorous than the development of new concepts and ideas, but it is both far more frequent and far more important. Most of these innovations are small, but most are quite successful. This is what companies call “their cash cow”: a product line that requires very little new development cost while being profitable year after year.

The second form of design is what is generally taught in design, engineering and MBA courses on “breakthrough product innovation.” Here is where new concepts get invented, new products defined, and new businesses formed. This is the fun part of innovation. As a result, it is the arena that most designers and inventors wish to inhabit. But the risks are great: most new innovations fail. Successful innovations can take decades to become accepted. As a result, the people who create the innovation are not necessarily the people who profit from it.

In my Apple example, the designers were devising a new conception. In the case of Google and Amazon, the companies are practicing incremental enhancement. They are two different activities. Note that the Apple product, like most new innovations, failed. Why? I return to this example later.

Both forms of innovation are necessary. The fight over data-driven design is misleading in that it uses the power of one method to deny the importance of the second. Data-driven design through testing is indeed effective at improving existing products. But where did the idea for the product come from in the first place? From someone’s creative mind. Testing is effective at enhancing an idea, but creative designers and inventors are required to come up with the idea.

Why Testing Is Both Essential and IncompleteData-driven design is “hill-climbing,” a well-known algorithm for optimization. Imagine standing in the dark in an unknown, hilly terrain. How do you get to the top of the hill when you can’t see? Test the immediate surroundings to determine which direction goes up the most steeply and take a step that way. Repeat until every direction leads to a lower level.

But what if the terrain has many hills? How would you know whether you are on the highest? Answer: you can’t know. This is called the “local maximum” problem: you can’t tell if you are on highest hill (a global maximum) or just at the top of a small one.

When a computer does hill climbing on a mathematical space, it tries to avoid the problem of local maxima by initiating climbs from numerous, different parts of the space being explored, selecting the highest of the separate attempts. This doesn’t guarantee the very highest peak, but it can avoid being stuck on a low-ranking one. This strategy is seldom available to a designer: it is difficult enough to come up with a single starting point, let alone multiple, different ones. So, refinement through testing in the world of design is usually only capable of reaching the local maximum. Is there a far better solution (that is, is there a different hill which yields far superior results)? Testing will never tell us.

Here is where creative people come in. Breakthroughs occur when a person restructures the problem, thereby recognizing that one is exploring the wrong space. This is the creative side of design and invention. Incremental enhancements will not get us there.

Barriers to Great InnovationDramatic new innovation has some fundamental characteristics that make it inappropriate for judgment through testing. People resist novelty. Behavior tends to be conservative. New technologies and new methods of doing things usually take decades to be accepted – sometimes multiple decades. But the testing methods all assume that one can make a change, try it out, and immediately determine if it is better than what is currently available.

There is no known way to tell if a radical new idea will eventually be successful. Here is where great leadership and courage is required. History tells us of many people who persevered for long periods in the face of repeated rejection before their idea was accepted, often to the point that after success, people could not imagine how they got along without it before. History also tells us of many people who persevered yet never were able to succeed. It is proper to be skeptical of radical new ideas.

In the early years of an idea, it might not be accepted because the technology isn’t ready, or because there is a lot more optimization still to be done, or because the audience isn’t ready. Or because it is a bad idea. It is difficult to determine which of those reasons dominates. The task only becomes easy in hindsight, long after it becomes established.

These long periods between formation and initial implementation of a novel idea and its eventual determination of success or failure in the marketplace is what defeats those who wish to use evidence as a decision criterion for following a new direction. Even if a superior way of doing something has been found, the automated test process will probably reject it, not because the idea is inferior, but because it cannot wait decades for the answer. Those who look only at test results will miss the large payoff.

Of course there are sound business reasons why ignoring potentially superior approaches might be a wise decision. After all, if the audience is not ready for the new approach, it would initially fail in the marketplace. That is true, in the short run. But to prosper in the future, the best approach would be to develop and commercialize the new idea to get marketplace experience, to begin the optimization process, and to develop the customer base. At the same time one is preparing the company for the day when the method takes off. Sure, keep doing the old, but get ready for the new. If the company fails to recognize the newly emerging method, its competitors will take over. Quite often these competitors will be a startup that existing companies ignored because what they were doing was not well accepted, and in any event did not appear to challenge the existing business: see “The innovator’s dilemma.”

Gestural, multi-touch interfaces for screen-driven devices and computer games are good examples. Are these a brilliant new innovation? Brilliant? Yes. New? Absolutely not. Multi-touch devices were in research labs for almost three decades before the first successful mass-produced products. I saw gestures demonstrated over two decades ago. New ideas take considerable time to reach success in the marketplace. If an idea is commercialized too soon, the result is usually failure (and a large loss of money).

This is precisely what the Apple designer of my opening paragraph had done. What I was shown was a portable computer designed for schoolchildren with a form factor unlike anything I had ever seen before. It was wonderful, and even to my normally critical eye, it looked like a perfect fit for the purpose and audience. Alas, the product got caught in a political fight between warring Apple divisions. Although it was eventually released into the marketplace, the fight crippled its integrity and it was badly executed, badly supported, and badly marketed.

The resistance of a company to new innovations is well founded. It is expensive to develop a new product line with unknown profitability. Moreover, existing product divisions will be concerned that the new product will disrupt existing sales (this is called “cannibalization”). These fears are often correct. This is a classic case of what is good for the company being bad for an existing division, which means bad for the promotion and reward opportunities for the existing division. Is it a wonder companies resist? The data clearly show that although a few new innovations are dramatically successful, most fail, often at great expense. It is no wonder that companies are hesitant – resistant – to innovation no matter what their press releases and annual reports claim. To be conservative is to be sensible.

The FutureAutomated data-driven processes will slowly make more and more inroads into the space now occupied by human designers. New approaches to computer-generated creativity such as genetic algorithms, knowledge-intensive systems, and others will start taking over the creative aspect of design. This is happening in many other fields, whether it be medical diagnosis or engineering design.

We will get more design without designers, but primarily of the enhancement, refinement, and optimization of existing concepts. Even where new creative artificial systems are developed, whether by neural networks, genetic algorithms, or some yet undiscovered method, any new concept will still face the hurdle of overcoming the slow adoption rate of people and of overcoming the complex psychological, social, and political needs of people. To do this, we need creative designers, creative business people, and risk takers willing to push the boundaries. New ideas will be resisted. Great innovations will come at the cost of multiple great failures.

Design without designers? Those who dislike the ambiguity and uncertainty of human judgments, with its uncertain track record and contradictory statements will try to abolish the human element in favor of the certainty that numbers and data appear to offer. But those who want the big gains that creative judgment can produce will follow their own judgment. The first case will bring about the small, continual improvements that have contributed greatly to the increased productivity and lowering of costs of our technologies. The second case will be rewarded with great failures and occasional great success. But those great successes will transform the world.